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The aim of this paper is to present video quality prediction models for objective non-intrusive, prediction of H.264 encoded video
for all content types combining parameters both in the physical and application layer over Universal Mobile Telecommunication
Systems (UMTS) networks. In order to characterize the Quality of Service (QoS) level, a learning model based on Adaptive Neural
Fuzzy Inference System (ANFIS) and a second model based on non-linear regression analysis is proposed to predict the video
quality in terms of the Mean Opinion Score (MOS). The objective of the paper is two-fold. First, to find the impact of QoS
parameters on end-to-end video quality for H.264 encoded video. Second, to develop learning models based on ANFIS and non-
linear regression analysis to predict video quality over UMTS networks by considering the impact of radio link loss models. The
loss models considered are 2-state Markov models. Both the models are trained with a combination of physical and application
layer parameters and validated with unseen dataset. Preliminary results show that good prediction accuracy was obtained from
both the models. The work should help in the development of a reference-free video prediction model and QoS control methods

for video over UMTS networks.

1. Introduction

Universal Mobile Telecommunication System (UMTS) is
a third generation (3G), wireless cellular network based
on Wideband Code Division Multiple Access technology,
designed for multimedia communication. UMTS is among
the first 3G mobile systems to offer wireless wideband
multimedia communications over the Internet Protocol [1].
Multimedia contents on the Internet can be accessed by the
mobile Internet users at data rates between 384 kbps and
up to 2Mbps in a wide coverage area with perfect static
reception conditions.

Video streaming is a multimedia service, which is
recently gaining popularity and is expected to unlock new
revenue flows for mobile network operators. Significant
business potential has been opened up by the convergence
of communications, media, and broadcast industries towards

common technologies by offering entertainment media and
broadcast content to mobile user. However, for such services
to be successful, the users Quality of Service (QoS) is likely
to be the major determining factor. QoS of multimedia com-
munication is affected by parameters both in the application
and physical layer. In the application layer, QoS is driven
by factors such as resolution, frame rate, sender bitrate,
and video codec type. In the physical layer, impairments
such as the block error rate, jitter, delay, and latency. are
introduced. Video quality can be evaluated either subjectively
or based on objective parameters. Subjective quality is the
users’ perception of service quality (ITU-T P.800) [2]. The
most widely used metric is the Mean Opinion Score (MOS).
Subjective quality is the most reliable method. However, it
is time consuming and expensive and hence, the need is
for an objective method that produces results comparable
with those of subjective testing. Objective measurements can



be performed in an intrusive or nonintrusive way. Intrusive
measurements require access to the source. They compare
the impaired videos to the original ones. Full reference
and reduced reference video quality measurements are both
intrusive [3]. Quality metrics such as Peak Signal-to-Noise
Ratio (PSNR), SSIM [4], VQM [5], and PEVQ [6] are
full reference metrics. VQM and PEVQ are commercially
used and are not publicly available. Nonintrusive methods
(reference-free), on the other hand, do not require access
to the source video. Nonintrusive methods are either signal-
or parameter-based. Nonintrusive methods are preferred to
intrusive analysis as they are more suitable for online quality
prediction/control.

Recently, there has been work on video quality pre-
diction. Authors in [7-9] predicted video quality for
mobile/wireless networks taking into account the application
level parameters only, whereas authors in [10] used the
network statistics to predict video quality. In [11] authors
have proposed a model to measure temporal artifacts on
perceived video quality in mobile video broadcasting ser-
vices. We proposed in [12] video quality prediction models
over wireless local area networks that combined both the
application and network level parameters. In UMTS Radio
Link Control (RLC), losses severely affect the QoS due
to high error probability. The RLC is placed on top of
the Medium Access Control and consists of flow control
and error recovery after processing from the physical layer.
Therefore, for any video quality prediction model, it is
important to model the RLC loss behaviour appropriately. In
this paper only RLC Acknowledged Mode (AM) is considered
as it offers reliable data delivery and can recover frame losses
in the radio access network. Recent work in [13-16] has
focused on the impact of UMTS link layer errors on the
quality of H.264/MPEG4 encoded videos. In [17] the impact
of H.264 video slice size on end-to-end video quality is
investigated. In [18] authors have shown that RLC AM mode
outperforms the unacknowledged mode and proposed a self-
adaptive RLC AM protocol. In [19] performance evaluation
of video telephony over UMTS is presented. Most of the
current work is either limited to improving the radio channel
or evaluation of parameters that impact on QoS of video
transmission over UMTS networks. However, very little work
has been done on predicting end-to-end video quality over
UMTS networks considering both the different content types
and the impact of RLC loss models.

As the convergence of broadcast/multicast and the
Internet becomes a reality, delivery of multimedia content
to large audiences will become very cost-effective using
wireless access networks such as UMTS, WiFi, WiMax, or
DVB-H. Therefore, provisioning of multimedia services can
easily be offered over several access technologies. Hence,
there is a need for an efficient, nonintrusive video quality
prediction model for technical and commercial reasons. The
model should predict perceptual video quality to account
for interactivity. In this paper, we have looked at the UMTS
access network. The error rate simulated in the physical
layer is employedto generate losses at the link layer modelled
with a 2-state Markov model [20-22] with variable Mean
Burst Lengths (MBLs) [23]. Hence, we evaluate the impact
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of different loss models on end-to-end video quality as
it was shown in [24] that there is a strong impact of
second-order error characteristics of the channel onto the
performance of higher layer protocols. Furthermore, based
on the content types, we are looking for an objective measure
of video quality simple enough to be calculated in real-
time at the receiver side. We present two new reference-free
approaches for quality estimation for all content types. The
contributions of the paper are twofold

(1) investigation of the combined effects of physical and
application layer parameters on end-to-end perceived
video quality over UMTS networks for all content
types,

(2) development of learning models for video quality
prediction as (a) a hybrid video quality prediction
model based on an Adaptive Neural Fuzzy Inference
System (ANFIS), as it combines the advantages of a
neural network and fuzzy system [25] for all content
types and (b) a regression-based model for all content

types.

The model is predicted from a combination of param-
eters in the application layer, that is, Content Type (CT),
video Sender Bitrate (SBR), and Frame Rate (FR), and in
the physical layer, that is, Block Error Rate (BLER) and Mean
Burst Length (MBL). The video codec used was H.264/AVC
[26] as it is the recommended codec for video transmission
over UMTS 3G networks. All simulations were carried out in
the OPNET Modeler [27] simulation platform.

The rest of the paper is organised as follows. The
video quality assessment problem is formulated in Section 2.
Section 3 presents the background to content-based video
quality prediction models. In Section4, the proposed
content-based video quality models are presented, whereas,
Section 5 outlines the simulation set-up. Section 6 describes
the impact of QoS parameters on end-to-end video quality.
The evaluation of the proposed models is presented in
Section 7. Conclusions and areas of future work are given in
Section 8.

2. Problem Statement

In multimedia streaming services, there are several parame-
ters that affect the visual quality as perceived by the end users
of the multimedia content. These QoS parameters can be
grouped under application layer QoS and physical layer QoS
parameters. Therefore, in the application layer perceptual
QoS of the video bitstream can be characterized as

Perceptual Qos = f (content type, SBR, frame rate, codec
type, resolution, etc.)

whereas, in the physical layer it is given by
Perceptual QoS = f(PER, delay, latency, jitter, etc.).

It should be noted that the encoder and content dimen-
sions are highly conceptual. In this research we chose H.264
as the encoder type as it is the recommended codec for
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FIGURE 1: The Spatiotemporal grid.

low bitrates. We used our previously defined classification
function [12] to classify the video contents based on their
spatial and temporal features. In the application layer we
chose Sender Bitrate (SBR), Frame Rate (FR), and Content
Type (CT) and in the physical layer we chose Block Error Rate
(BLER) and Mean Burst Length (MBL) as QoS parameters. A
single Mean Opinion Score (MOS) value is used to describe
the perceptual quality. Therefore, MOS in the application
layer is given as MOS”, whereas, MOS in the physical layer
is given by MOS® as

MOS* = {CT, SBR, FR} and MOS" = {BLER, MBL}

The overall MOS is given by MOS = f(MOS*,
MOSP).

In this paper we evaluated the impact of QoS parameters
both in the application and physical layer and hence
confirmed the choice of parameters in the development of
the learning models. Video quality is affected by parameters
in the application and physical layer. Therefore, video quality
prediction model should take into account parameters in
both layers. The relationships of QoS parameters are thought
to be nonlinear. Therefore, an ANFIS-based neural network
model is chosen for video quality prediction because it
combines the advantages of fuzzy systems (based on human
reasoning) and neural networks. In addition to ANFIS-based
prediction models, we have also predicted video quality
based on nonlinear regression. This method is chosen as
it is easy to implement in QoS control, for example, video
SBR adaptation. ANFIS-based models are more complex
and to implement them in real-time for QoS control is
not as straightforward as a regression-based model which
is light weighted and easily implementable. The purpose of
this paper is to highlight the two methods for video quality
prediction.

3. Background to Content-Based
Video Quality Prediction

In this section we present the background literature on con-
tent classification and its impact on video quality prediction.

3.1. Two-Dimensional Content Classification. The content of
each video clip may differ substantially depending on its
dynamics (i.e., the spatial complexity and/or the temporal
activity of the depicted visual signal). The quantification
of this diversity is of high interest to the video coding
experts, because the spatiotemporal content dynamics of a
video signal specify and determine the efficiency of a coding
procedure.

From the perceptual aspect, the quality of a video
sequence is dependent on the spatiotemporal dynamics
of the content. More specifically, it is known from the
fundamental principles of the video coding theory that
action clips with high dynamic content are perceived as
degraded in comparison to the sequences with slow-moving
clips, subject to identical encoding procedures.

Thus the classification of the various video signals
according to their spatiotemporal characteristics will provide
to the video research community the ability to quantify the
perceptual impact of the various content dynamics on the
perceptual efficiency of the modern encoding standards.

Towards this classification, a spatiotemporal plane is
proposed, where each video signal (subject to short duration
and homogeneous content) is depicted as Cartesian point in
the spatiotemporal plane, where the horizontal axis refers
to the spatial component of its content dynamics and the
vertical axis refers to the temporal one. The respective plane
is depicted on Figure 1.

Therefore, according to this approach, each video clip
can be classified to four categories depending on its content
dynamics, namely,

(i) Low Spatial Activity-Low Temporal Activity (upper
left),

(ii) High Spatial Activity-Low Temporal Activity (upper
right),

(iii) Low Spatial Activity-High Temporal Activity (lower
left),

(iv) High Spatial Activity-High Temporal Activity (lower
right).

The accuracy of the proposed spatiotemporal content
plane is subject to the duration of the video signal and
the homogeneity of the content. For short duration and
homogeneous content video clips, the classification is
representative and efficient. However, for video clips of
longer duration and heterogeneous content, spatiotemporal
classification is becoming difficult.

We propose to use two discrete metrics, one for the
spatial component and one for the temporal one in order to
cover the spatiotemporal plane and the needs of this paper.
The averaged frame variance is proposed for the spatial
component of the video signal. This objective metric permits
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FIGURE 2: Snapshots of the training and validation content types.

the quantification of the spatial dynamics of a video signal
short in duration and homogeneous. Considering that a
frame y is composed of N pixels x;, then the variance of a
frame is defined in

1S (492 (1)
N xXi—X)".

Oframe y =

Derived from (1), (2) presents the averaged frame
variance for the whole video duration. K represents the
number of frames in the video

K
Ii'kzlafzramey = Z z(-xkz - . (2)
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The averaged variance of the successive y frame lumi-
nance difference is proposed as a metric for the quan-
tification of the temporal dynamics of a video sequence.
Considering that a frame contains N pixels x; and K, the
number of frames in the video, then the averaged frame
difference of the successive frame pairs is defined in
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Therefore, the averaged variance for the overall duration of
the test signal is defined in
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The scale in both axes refers to the normalized measure-
ments (considering a scale from 0 up to 1) of the spatial
and temporal component, according to the aforementioned
metrics. The normalization procedure applied in this paper,
sets the test signal with the highest spatiotemporal content
to the lower right quarter and specifically to the Cartesian
(Spatial, Temporal) values (0.75, 0.75). This hypothesis,
without any loss of generality, allows to our classification
grid the possibility to consider also test signals that may have
higher spatiotemporal content in comparison to the tested
ones.

For the needs of this paper six short sequences (three for
training and three for validation) are used. Snapshots of these
sequences are depicted in Figure 2. All sequences are available
to download from [28].

Applying the described spatial and temporal metrics
on the sequences used, their classification on the proposed
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FIGURE 3: Spatiotemporal classification of the training and valida-
tion sequences.

spatiotemporal grid is depicted on Figure 3. According to
Figure 3, it can be observed that the spatiotemporal dynam-
ics of the selected sequences are distributed to the three
quarters of the spatiotemporal grid, indicating their diverse
nature of the content dynamics. Moreover, the validity of the
proposed metrics is certified by these experimental results,
showing that they provide adequate differentiation among
the dynamics of the signals under test.

3.2. Video Quality Prediction Method. Figure 4 illustrates
how the video quality is predicted nonintrusively. At the
top of Figure 4, intrusive video quality measurement block
is used to measure video quality at different network QoS
conditions (e.g., different packet loss, jitter, and delay) or
different application QoS settings (e.g., different codec type,
content type, sender bitrate, frame rate, and resolution). The
measurement is based on comparing the reference and the
degraded video signals. Peak Signal-to-Noise Ratio (PSNR)
is used for measuring video quality in the paper to prove
the concept. MOS values are obtained from PSNR to MOS
conversion [29]. The video quality measurements based
on MOS values are used to derive nonintrusive prediction
model based on artificial neural networks and nonlinear
regression methods. The derived prediction model can
predict video quality (in terms of MOS) from the physical
layer QoS parameters of block error rate and mean burst



International Journal of Digital Multimedia Broadcasting

length and the application layer QoS parameters of content
type, SBR, and frame rate. In Figure 4 the video content
classification is carried out from raw videos at the sender
side by extracting their spatial and temporal features. The
spatio-temporal metrics have quite low complexity and thus
can be extracted from videos in real-time. Video contents
are classified as a continuous value from 0 to 1, with 0
as content with no movement, for example, still pictures
and 1 as a very fast moving sports type of content. The
content features reflecting the spatiotemporal complexity of
the video go through the statistical classification function
(cluster analysis) and content type is decided based on the
Euclid distance of the data [12]. Therefore, video clips in one
cluster have similar content complexity. Hence, our content
classifier takes the content features as input observations
while content category as the output. For larger video clips
or movies the input will be segment-by-segment analysis of
the content features extracted. Therefore, within one movie
clip there will be a combination of all content types.

3.3. Content Dynamics and Video Quality Prediction. In this
subsection, we discuss the spatiotemporal content dynamics
impact on (i) the video quality acceptance threshold (i.e., the
perceptual quality level below which the user considers that
an encoded video is of unacceptable quality), (ii) the highest
achievable video quality level, and (iii) the pattern of video
quality versus sender bitrate.

In order to examine the impact of the content dynamic
on the deduced video quality versus the sender bitrate
pattern, respective curves of PQoS versus sender bitrate and
PQoS versus frame rate should be derived. Such curves can
be derived using an audience of people, who are watching
the video (e.g., a short video clip) and score its quality, as
perceived by them. Such curves are shown in Figures 5(a)
and 5(b). Figure 5(a) represents PQoS versus sender bitrate
curves which follow the typical logarithmic/exponential
pattern that can be met at the literature. More specifically,
curve A represents a video clip with low temporal and spatial
dynamics, that is, whose content has “poor” movements and
low picture complexity. Such a curve can be derived, for
example, from a talk show. Curve C represents a short video
clip with high dynamics, such as a football match. Curve B
represents an intermediate case. Each curve—and therefore
each video clip—can be characterized by (a) the low sender
bitrate (SBRy), which corresponds to the lower value of the
accepted PQoS (PQp) by the audience, (b) the high sender
bitrate (SBRy), which corresponds to the minimum value of
the sender bitrate for which the PQoS reaches its maximum
value (PQy) (see BRy for curve A in Figure 5(a)), and (c)
the mean inclination of the curve, which can be defined
as ME = (PQyg — PQg)/(SBRy — SBRp). From the curves
of Figure 5(a), it can be deduced that video clips with low
dynamics have lower SBRy, than clips with high dynamics.

In comparison to Figure 5(a), the curves in Figure 5(b)
represent PQoS versus frame rates for the three types of
video clips. As mentioned before curve A represents video
clip with low spatiotemporal activity, curve B represents an
intermediate case and curve C represents video with high

spatio-temporal activity. We observe from Figure 5(b) that
for video with low spatio-temporal activity, frame rates do
not have any impact on quality. However, as the spatio-
temporal activity increases, for example, from intermediate
to high, then for low frame rates quality degrades signifi-
cantly depending on the spatio-temporal complexity.

In the literature, the specific curves are characterized
as Benefit Functions, because they depict the perceptual
efficiency of an encoded signal in relevance to the encoding
bitrate. The differentiation among these curves comes from
their slope and position on the benefit-resource plane, which
depend on the S-T activity of the video content. Thus, the
curve has low slope and transposes to the lower right area
of the benefit-resource plane, for audiovisual content of high
S-T activity. On the contrary, the curve has high slope and
transposes to the upper left area, for low S-T activity content.

Practically, the transposition of the curve to the upper
left area means that content with low S-T activity (e.g., a talk
show) reaches a better PQoS level at relatively lower sender
bitrate in comparison with a video content with high S-T
activity. In addition, when the encoding bitrate decreases
below a threshold, which depends on the video content,
the PQoS practically “collapses” On the other hand, the
transposition of the curve to the lower right area means
that content with high S-T activity (e.g., a football match)
requires higher sender bitrate in order to reach a satisfactory
PQoS level. Nevertheless, it reaches its maximum PQoS value
more smoothly than in the low S-T activity case.

Practically, it can be observed from Figure 5(a) that in
low sender bitrates curve A reaches a higher perceptual
level compared to curve B depicting a sequence with higher
spatiotemporal content. On the other hand, curve C requires
higher sender bitrate in order to reach a satisfactory PQoS
level. Nevertheless, curve (C) reaches its maximum PQoS
value more smoothly than in the low activity case.

Following the general pattern in Figures 5(a) and 5(b),
it can be observed that the impact of the spatiotemporal
activity on the sender bitrate pattern is depicted very clearly.
It also shows two more important outcomes:

(i) For video signals with low spatiotemporal activity, a
saturation point appears, above which the perceptual
enhancement is negligible even for very high encod-
ing bitrates. However, frame rates do not have an
impact on quality for the same videos.

(ii) As the spatiotemporal activity of the content becomes
higher, the respective perceptual saturation point
(i.e., the highest perceptual quality level) becomes
lower, which practically means that video of high
dynamics never reaches a very high perceptual level.
The low frame rates reduce the perceptual quality for
the same videos.

4. Proposed Video Quality Prediction Models

4.1. Introduction to the Models. The aim is to develop
learning models to predict video quality for all content
types from both application and physical layer parameters
for video streaming over UMTS networks as shown in
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Figure 6. For the tests we selected three different video
sequences representing slow moving content to fast moving
content as classified in our previous work [12]. The video
sequences were of QCIF resolution (176 X 144) and encoded
in H.264 format with an open source JM software [26]
encoder/decoder. The three video clips were transmitted
over simulated UMTS network using OPNET simulator. The
application layer parameters considered are CT, FR, and SBR.
The physical layer parameters are BLER and MBL modelled
with 2-state Markov model.

4.2. ANFIS-Based Video Quality Prediction Model. ANFIS
uses a hybrid learning procedure and can construct an input-
output mapping based on both human knowledge (in the
form of fuzzy if-then rules) and stipulated input-output data
pairs. A two-input ANFIS [25] architecture as shown in
Figure 7(a) is an adaptive multilayer feedforward network in
which each node performs a particular function on incoming
signals as well as a set of parameters pertaining to this node.

Application SBR, FR
layer CT
Video quality | pMOS
Video prediction ?
model
BLER
Physical layer
MBL

Ficure 6: Functional block of proposed video quality prediction
model.

The entire system architecture in Figure 7(a) consists of
five layers, namely, a fuzzy layer, a product layer, a normalized
layer, a defuzzy layer, and a total output layer. The two inputs
are x and y. The output is f. For a first-order Sugeno fuzzy
model, a typical rule set with two fuzzy if-then rules can be
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expressed as

Rule 1: If xis A; and (y is By), then fi = pix + qiy + 11,
Rule 2: If x is A and (y is B,), then f, = pox + 2y + 12,

where p1, p2,q1,q2,11,and 1, are linear parameters, and
A1, A,, By, and B, are nonlinear parameters

wifi +wafo
wi+ wy

f= (5)

The corresponding equivalent ANFIS architecture for
our model is shown in Figure 7(b).

The five chosen inputs in Figure 7(b) are Frame Rate
(FR), Sender Bitrate (SBR), Content Type (CT), Block Error
Rate (BLER), and Mean Burst Length (MBL). Output is the
MOS score. The degree of membership of all five inputs is
shown in Figure 8.

The number of membership function is two for all five
inputs and their operating range depends on the five inputs.

For example for input of SBR the operating range is (50—
250).

4.3. Regression-Based Video Quality Prediction Model. The
relationship of MOS and the 5 selected inputs is shown in
Figure 9. From Figure 9 we canobtain the range of MOS
values obtained for each input, for example, from MOS
versus FR, the range of MOS is from 1 to 4.5 for FRs of
5, 10, and 15. Once the relationship between MOS and the
five selected inputs was found for the three content types
representing low spatio-temporal to high ST features, we
carried out nonlinear regression analysis with the MATLAB
function nlintool to find the nonlinear regression model that
best fitted our data.

4.4. Training and Validation of the Proposed Models. For
artificial neural networks, it is not a challenge to predict
patterns existing on a sequence with which they were trained.
The real challenge is to predict sequences that the network
did not use for training. However, the part of the video
sequence to be used for training should be “rich enough”
to equip the network with enough power to extrapolate
patterns that may exist in other sequences. The three content
types used for training the models were “akiyo”, “foreman”,
and “Stefan”, whereas, the model was validated by three
different content types of “suzie”, “carphone”, and “football”
reflecting similar spatio-temporal activity [12]. Snapshots of
the training and validation sequences are given in Figure 2.
The data selected for validation was one third that of testing.
The parameter values are given in Table 1. In total, there
were around 600 sequences for training and around 250 test
sequences for validation for the proposed models.

5. Simulation Set-Up

5.1. Network Topology. The UMTS network topology is
modeled in OPNET Modeler and is shown in Figure 10.
It is made up of a Video Server, connected though an IP
connection to the UMTS network, which serves to the mobile
user.

With regard to the UMTS configuration, the video
transmission is supported over a Background Packet Data
Protocol (PDP) Context with a typical mobile wide area
configuration as defined in 3 GPP TR 25.993 [1] for the
“Interactive or Background/UL:64 DL:384 kbps/PS RAB”.
The transmission channel supports maximum bitrates of
384 kbps Downlink/64 kbps Uplink over a Dedicated Chan-
nel (DCH). Since the analyzed video transmission is uni-
directional, the uplink characteristics are not considered a
bottleneck in this case. Table 1 shows the most relevant
parameters configured in the simulation environment.

The RLC layer is configured in Acknowledge Mode
(AM) and without requesting in-order delivery of Service
Data Units (SDUs) to upper layers. Additionally, the Radio
Network Controller (RNC) supports the concatenation of
RLC SDUs, and the SDU Discard Timer for the RLC AM
recovery function is set to 500 ms. As a result of all these



8 International Journal of Digital Multimedia Broadcasting

! inlmfl inlmf2 1 in2mfl in2mf2 1 in3mfl in3mf2
o 038 2 038 2 038
k2 = =
o} 3 3
£ 06 £ 06 £ 06
L L L
g g g
S b b
o 0.4 g 0.4 g 0.4
/02 802 802
0 0 0
10 15 0.2 0.4 0.6 0.8 50 100 150 200 250
Frame rate (fps) Content type Sender bitrate (kbps)
(a) (b) (0)
1 in4mfl in4mf2 ) in5mfl in5mf2
a2 038 a. 0.8
4 4
‘Q-') =
E 06 é 0.6
L L
g g
% 04 s
g 9 0.4
@ &
R 02 A 0.2
0 0
1 1.5 2 2.5 0.05 0.1 0.15
Mean burst length Block error rate
(d) (e)
F1GUure 8: Membership function for the 5 selected inputs.
TaBLE 1: DL UTRAN Configuration.
UTRAN Feature Value
Max. bitrate at RLC level 384 kbps
RLC PDU size 320 bits
RLC Mode Acknowledged Mode (AM)
RLC Layer Delivery order of SDUs No In-Order Delivery
Allowed Transport Format Set (TES) Six possible TFs: 0-1-2-4-8-12 TB/TBS
SDU discard mode Timer Based, Discard Timer = 500 ms
SDU concatenation Enabled
Transport Block (TB) size 336 bits
PHY layer Transmission Time Interval (TTI) 10 ms
Transmission Channel (TrCH) type Dedicated Channel (DCH)
configuration parameters, the behavior of the UTRAN is as (iii) When all the PDUs of an RLC SDU are correctly
follows. received, the UE sends it to the upper layer regardless
(1) The RNC keeps sending RLC SDUs to the UE at the the status of the previous RLC SDUs.
reception rate. (iv) If a retransmitted RLC PDU is once again lost, the
(ii) When an RLC PDU is lost, the RNC retransmits this RNC tries the retransmission until the SDU Discard

PDU. Timer expires.
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Figure 10: OPNET network scenario.

Although the considered UMTS service supports the
recovery of radio errors in the UTRAN, the quality of the
video reception may be impacted in several ways. The local
recoveries introduce additional delays, which may lead to
frame losses in the application buffer. As well, the local recov-
eries are limited by a counter, so in severe radio degradations
some frames may be actually lost in the UTRAN. Addition-
ally, these recoveries increase the required bitrate in the radio
channel, which in high usage ratios may further degrade the

video transmission. As a result of all these considerations,
we can state the great relevance of the combined impact of
the video encoding parameters and the specific UMTS error
conditions.

The implemented UMTS link layer model is based on the
results presented in [23], which analyzes the error traces from
currently deployed 3G UMTS connections. Specifically, the
error model at RLC layer indicates that, for mobile users, the
radio errors can be aggregated at Transmission Time Interval
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(TTI-) level. This error model leads to possible losses of RLC
SDUs, which lead to losses at RTP layer and finally to frame
losses at video layer.

5.2. Transmission of H.264 Encoded Video. The transmission
of H.264 encoded video over UMTS network is illustrated
in Figure 11. The original YUV sequences are encoded with
the H.264/AVC JM Reference Software with varying SBR and
FR values. H.264 is chosen as it is the recommended codec
to achieve suitable quality for low bitrates. The resulting
264 video track becomes the input of the next step, which
emulates the streaming of the mp4 video over the network
based on the RTP/UDP/IP protocol stack. The maximum
packet size is set to 1024 bytes in this case. The resulting
trace file feeds the OPNET simulation model. For the aims
of this paper, the video application model has been modified
to support the incoming trace file (st) and generate the RTP
packet traces in the sender module (sd) and in the receiver
module (rd). Finally, the last step is in charge of analyzing the
quality of the received video sequences against the original
quality and the resulting PSNR values are calculated with
the ldecod tool included in the H.264/AVC JM Reference
Software. MOS scores are calculated based on the PSNR-to-
MOS conversion from Evalvid [29].

Instead of setting up a target BLER value for the PDP
Context, the UE model is modified in order to support
the desired error characteristics. The implemented link loss
model is special case of a 2-state Markov model [20, 21] and
its performance is provided by two parameters: the BLER and
the MBL. The 2-state Markov Model is depicted in Figure 12.
According to this model, the network is either in good (G)
state, where all packets are correctly delivered, or in bad (B)
state, where all packets are lost. Transitions from G to B and
vice versa occur with probability 1 —  and 1 — «. The average
block error rate and mean burst length can be expressed as
MBL = (1 — @) ' and BLER = (1 - f)/(2 —a — B). Ifa = 0,
this reduces to random error model with the only difference
that loss of two consecutive packets is not allowed.

The MBL = 1.75 is selected based on the mean
error burst length found in [23] from real-world UMTS
measurements. The MBL = 2.5 depicts a scenario where
more bursty errors are found, while the MBL = 1 depicts
random uniform error model.

5.3. Test Sequences and Variable Test Parameters. The video
encoding process was carried out using the H.264 codec
as the most prominent alternative for low bandwidth
connections. From the 3GPP recommendations we find
that for video streaming services, such as VOD or unicast
IPTV services, a client should support H.264 (AVC) Baseline
Profile up to Level 1.2. [26]. As the transmission of video
was for mobile handsets, all the video sequences are encoded
with a QCIF resolution. The considered frame structure
is IPP for all the sequences, since the extensive use of I
frames could saturate the available data channel. From these
considerations, we set up the encoding features as shown in
Table 2.

The variable encoding parameters of the simulations are
the video sequence, the encoding frame rate, and the target
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TABLE 2: Encoding parameter set.

Encoding parameter Value
Profile/level IDC (66,11) baselilni: profile, level
Target BR Variable (see Table 3)
Frame Skip (resulting FR) Variable (see Table 3)
Spatial resolution QCIF (176 x 144)
Sequence type IPPP
Entropy coding method CAVLC
RD-optimized mode decision Enabled

Data partitioning mode 1 partition
FMO No FMO

Slice mode Not used

Total number of reference frames 5

Output type Annex B [26]

bitrate at the Video Coding Layer (VCL). The experiment
takes into account six test sequences, divided in two groups:
akiyo, foreman, and stefan are used for training the model,
while carphone, suzie, and football are devoted to the
validation of results. The selected frame rates and bitrates
are considered for low resolution videos, targeted at a mobile
environment with a handset reproduction.

For the UTRAN configuration, the 2-state Markov model
is set up at different BLER values and different burst
patterns in order to study the effect into the application
layer performance. The video sequences along with the
combination of parameters chosen are given in Table 3.

6. Impact of QoS Parameters on End-to-End
Video Quality

In this section, we study the effects of the five chosen QoS
parameters on video quality. We chose three-dimensional
figures in which two parameters were varied while keeping
the other three fixed. The MOS scores are computed as a
function of the values of all five QoS parameters.

6.1. Impact of BLER and MBL on Content Type (CT). The
impact of MBL and BLER on our chosen content types is
given in Figures 13(a) and 13(b).

The content type is defined in the range of [0,1] from
slow moving to fast moving sports type of content. From
Figure 13(a), we observe that as the activity of the content
increases the impact of BLER is much higher. For example,
for 20% BLER, CT of slow to medium type gives very good
MOS; whereas as the content activity increases, MOS reduces
to 3. From Figure 13(b) we observe that the MBL similar to
BLER has greater impact for content types with higher S-T
activity.

Similarly, the impact of SBR and FR on CT is given by
Figures 14(a) and 14(b). Again we observe that as the activity
of content increases for very low SBRs (20 kb/s) and low FRs
(51/s) the MOS is very low. However, for slow to medium
content activity the impact of SBR and FR is less obvious.
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F1Gure 11: Simulation methodology.
TaBLE 3: Simulation parameters.
Video sequences FR (fps) SBR (kbps) BLER (%) MBL
Akiyo, Foreman 7.5, 10, 15 48, 88, 128
Suzie, Carphone 10, 15 90, 130 1,5, 10, 15, 20, 30, 50 1,175, 2.5
Stefan 7.5, 10, 15 88, 130, 256
Football 10, 15 130, 200
1- ﬁ\ TABLE 4: Five-way ANOVA on MOS.
Sumof  Degreesof Mean F
Parameters . .. P-value
o Squares Freedom Squares statistic
B CT 29.508 2 14.754  109.27 0
\ FR 1.017 2 1.016 7.53 .0069
l-a SBR 9.559 2 4.7797 35.4 0
FIGURE 12: 2-state Markov loss model. BLER 1.152 4 0.3839 2.84 0402
MBL 0.361 2 0.1807 1.34 .2659

The lower value of MOS for higher SBR is due to network
congestion.

6.2. Impact of BLER and MBL on SBR. The combined
impact of SBR and BLER/MBL is given in Figure 15.
As expected, with increasing BLER and MBL the quality
reduces. However, for increasing SBR the quality improves
up to a point (SBR ~ 80kb/s) then increasing the SBR
results in a bigger drop of quality due to network congestion.
From Figure 15(b) we observe that the best quality in
terms of MOS was for an MBL of 1 (depicted random
uniform scenario). This would be expected because the BLER
was predictable. The worst quality was for BLER of 2.5
(very bursty scenario). Again this substantiates the previous
findings on 2-state Markov model. It was interesting to
observe how MBLs impact on quality; however it is captured
by the QoS BLER. Similar to Figure 15(a) for high SBR,
quality collapse for all values of MBLs due to network
congestion.

6.3. Impact of BLER and MBL on FR. Figures 16(a) and
16(b) show the impact of BLER and MBL on FR for all
content types. We observe that for faster moving contents
very low frame rates of 7.5fps impair quality. Again, we
observe that both BLER and MBL impact on the overall
quality. The impact of frame rate is more obvious for low

FRs and high BLER. However, when BLER is low quality is
still acceptable. This is shown in Figure 16(a). Figure 16(b)
shows that for low FRs quality is acceptable for MBL of
1.5. However, for MBL of 1 it starts to deteriorate. This is
mainly for high spatio-temporal contents. However, quality
completely collapses for MBL of 2.5 (very bursty scenario).
Again the impact is much greater on contents with high
spatio-temporal activity compared to those with low ST
activity.

6.4. Analysis of Results. In order to thoroughly study the
influence of different QoS parameters on MOS we perform
ANOVA (analysis of variance) [30] on the MOS data set.
Table 4 shows the results of the ANOVA analysis.

We performed 5-way ANOVA to determine if the means
in the MOS data set given by the 5 QoS parameters differ
when grouped by multiple factors (i.e., the impact of all the
factors combined). Table 4 shows the results, where the first
column is the Sum of Squares, the second column is the
Degrees of Freedom associated with the model, and the third
column is the Mean Squares, that is, the ratio of Sum of
Squares to Degrees of Freedom. The fourth column shows
the F statistic and the fifth column gives the P-value, which
is derived from the cumulative distribution function (cdf)
of F [30]. The small P-values (P < .01) indicate that the
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FiGure 13: (a) MOS versus CT versus BLER. (b) MOS versus CT versus MBL.

MOS

FiGURE 14: (a) MOS versus CT versus SBR. (b) MOS versus CT versus FR.

MOS is substantially affected by at least four parameters.
Furthermore, based on the magnitudes of P-values, we can
make a further claim that CT and SBR (P-value = 0) impact
the MOS results the most, followed by FR and then BLER,
while MBL has the least influence. As the MOS is found to
be mostly affected by CT and SBR, we further categorize
the CT and SBR using the multiple comparison test based
on Tukey-Kramer’s Honestly Significant Difference (HSD)
criterion [31]. The results of comparison test for CT and
SBR are shown in Figures 17(a) and 17(b), where the centre
and span of each horizontal bar indicate the mean and the
95% confidence interval, respectively. The different colours
in Figure 17 highlight similar characteristics and are very
useful in grouping similar attributes together. In Figure 17(a)
(CT versus MOS), CT is classified as [0.1 0.9], 0.1 is slow

moving content, for example, Akiyo and 0.9 are Stefan.
Therefore, from Figure 17(a), we can see that MOS is from
2.5 to 2.7 for Stefan as compared to MOS between 4.3 to 4.6
for slow moving content (Akiyo) and 3.8—4.0 for medium ST
activity (Foreman). Therefore, from Figure 17(a), we observe
that content types with medium-to-high S-T activity show
similar attributes, compared to that with low S-T activity.
Similarly, in Figure 17(b),the impact of higher SBR (i.e., 128
and 256) have similar impact on quality due to network
congestion issues compared to that of low SBR values.

Our studies (Figures 13-17) numerically substantiate the
following observations of video quality assessment.

(i) The most important QoS parameter in the applica-
tion layer is the content type. Therefore, an accurate
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FiGURE 15: (a) MOS versus SBR versus BLER. (b) MOS versus SBR versus MBL.

MOS

video quality prediction model must consider all
content types. Application layer parameters of SBR
and FR are not sufficient in predicting video quality.

(ii) The optimal combination of SBR and FR that gives
the best quality is very much content dependent
and varies from sequence to sequence. We found
that for slow moving content FR = 7.5 and SBR
= 48 kbps gave acceptable quality; however, as the
spatio-temporal activity of the content increased this
combination gave unacceptable quality under no
network impairment.

(iii) The most important QoS parameter in the physical
layer is BLER. Therefore, an accurate video quality
prediction model must consider the impact of physi-
cal layer in addition to application layer parameters.

(®)

FiGuRre 16: (a) MOS versus FR versus BLER. (b) MOS versus FR versus MBL.

(iv) The impact of physical layer parameters of MBL and
BLER varies depending on the type of content. For
slow moving content, BLER of 20% gives acceptable
quality; however, for fast moving content for the
same BLER, the quality is completely unacceptable.
Therefore, the impact of physical layer QoS parame-
ters is very much content dependent.

7. Evaluation of the Proposed Video Quality
Prediction Models

The aim was to develop learning models to predict
video quality considering all content types and RLC loss
models (2-state Markov) with variable MBLs of 1, 1.75,
and 2.5 for H.264 video streaming over UMTS networks.



14 International Journal of Digital Multimedia Broadcasting
Click on the group you want to test
48 t o
0.1 —o—
88 | o
5 0.5 —o— %
128 ——
0.9 r ——
256 —o—
2 2.5 3 3.5 4 4.5 5 1 1.5 2 2.5 3 3.5 4 4.5
MOS MOS
(a) (b)
FIGURE 17: (a) Multiple comparison test for CT versus MOS. (b) Multiple comparison test for SBR versus MOS.
TaBLE 5: Coefficients of metric models.
a b C d E f g h
4.3911 3.9544e — 08 0.0447 8.8501 —2.1381 —0.3631 -10.1177 0.3442
5 aQ
° g
45+ : ;
© 8 47
4l g (g .8 7
88
< 3.5+ . . . . . 8- gg) O,é) . " 4.6 4
3 ; ; ; ; 8 & ; o} o
S 3r '%'O o : =454
g 8
a. e 00
A 25L gy SO o il
©] o 44
E : 0] : (€] ‘
2 S0 - 257
o o 0.2
1.5+ ‘8 :
00
1 Lo 1 0.05 BLER
0'50'5 ] 1"5 5 2j5 3 315 4 4j5 5 FIGURE 19: MOS versus BLER versus MBL for the three content

MOS-measured

FiGURE 18: Predicted versus measured MOS results (ANFIS-based).

The models were trained with three distinct video clips
(Akiyo, Foreman, and Stefan) and validated with video
clips of Suzie, Carphone, and Football. The application
layer parameters were FR, SBR and CT and physical layer
parameters were BLER and MBL. The accuracy of the
proposed video quality prediction models is determined by
the correlation coefficient and the RMSE of the validation
results. MATLAB nlintool is used for the nonlinear regression
modeling

7.1. ANFIS-Based. The accuracy of the proposed ANFIS-
based video quality prediction model is determined by

types.

the correlation coefficient and the RMSE of the validation
results. The model is trained with three distinct content types
from parameters both in the application and physical layers
over UMTS networks. The model is predicted in terms of the
Mean Opinion Score (MOS). The predicted versus measured
MOS for the proposed ANFIS-based prediction model is
depicted in Figure 18.

7.2. Regression-Based. The procedure for developing the
regression-based model is outlined below.

Step 1 (Select content types). We selected three video
sequences with different impact on the user perception for
training and three different video sequences for validation
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FIGURE 20: MOS versus SBR versus FR for the three content types.
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FiGUrg 21: Predicted versus measured MOS results (regression-
based).

as shown in Figure 2. The video sequences ranged from very
little movement to fast moving sports type of clips to reflect
the different spatio-temporal features. Hence, the proposed
model is for all content types.

Step 2 (Obtain MOS versus BLER versus MBL). The impact
of BLER and MBL on MOS is shown in Figure 19. From
Figure 19, we observe that the higher the BLER and MBL
values, the greater loss in overall quality. However, MBL of
1 gives the best quality for all values of BLER. Introducing
burstiness reduces quality as would be expected.

Step 3 (Obtain MOS versus SBR versus FR). The relationship
between MOS, SBR, and FR is shown in Figure 20. From
Figure 20, we observe that at higher SBRs the video quality
degrades rapidly due to the UMTS network congestion at
downlink bandwidth. Similarly, at lower FRs, video quality
degrades. The impact is greater on videos with higher spatio-
temporal activity.

Step 4 (Surface fitting for nonlinear mapping from BLER,
MBL, CT, SBR, and FR to MOS). A nonlinear regression

15
TasLE 6: Comparison of the models.
Models R? RMSE
Regression-based 86.52% 0.355
ANFIS-based 87.17% 0.2812

analysis was carried out with the MATLAB function nlintool.
We obtained the nonlinear equation given in (6) with a
reasonable fitting goodness. The coefficients of the proposed
model given in (6) are given in Table 5. Figure 21 shows
the MOS-measured versus MOS predicted for the proposed
model

bef® + clog(SBR) + CT(d + elog(SBR))
1+ (f(BLER) + g(BLER)’)hMBL

MOS =a+

(6)

7.3. Comparison of the Models. The models proposed in this
paper are reference-free. The comparison of the two models
in terms of the correlation coefficient (R?) and Root Mean
Squared Error (RMSE) is given in Table 6.

The performance of both the ANFIS-based and
regression-based models over UMTS network is very similar
in terms of correlation coefficient and RMSE as shown
in Table 5. The model performance compared to a recent
work given in [32] where the authors have used a tool
called Pseudo-Subjective Quality Assessment (PSQA) based
on random neural networks performs well. In [32], the
authors train the random neural networks with network
parameters, for example, packet loss and bandwidth. In
addition they have used their tool to assess the quality
of multimedia (voice and video) over home networks—
mainly WLAN. Our proposed tool can be modified in
the future to assess voice quality. However, our choice
of parameters includes a combination of application and
physical layer parameters and our access network is UMTS
where bandwidth is very much restricted. Also compared to
our previous work [12], where we proposed three models
for the three content types, both the models perform very
well.

We feel that the choice of parameters is crucial in
achieving good prediction accuracy. Parameters such as MBL
in link layer allowed us to consider the case of less bursty or
more bursty cases under different BLER conditions. Also, in
the application level, the content type has a bigger impact
on quality than sender bitrate and frame rate. However,
if frame rate is reduced too low, for example, 7.5 f/s, then
frame rate has a bigger impact on quality then sender bitrate
for faster moving content. Similarly, if the sender bitrate
is too high, then quality practically collapses. This is due
to the bandwidth restriction over UMTS network causing
network congestion. Also contents with less movement
require low sender bitrate compared to that of higher move-
ment. Finally, to predict video quality, content type is very
important.
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8. Conclusions

This paper presented learning models based on ANFIS and
nonlinear regression analysis to predict video quality over
UMTS networks nonintrusively. We, further, investigated the
combined effects of application and physical layer parameters
on end-to-end perceived video quality and analyzed the
behaviour of video quality for wide-range variations of a set
of selected parameters over UMTS networks. The perceived
video quality is evaluated in terms of MOS. Three distinct
video clips were chosen to train the models and validated
with unseen datasets.

The results demonstrate that it is possible to predict the
video quality if the appropriate parameters are chosen. Our
results confirm that the proposed models bothANFIS-based
ANN and regression-based learning model are a suitable tool
for video quality prediction for the most significant video
content types.

Our future work will focus on extensive subjective testing
to validate the models and implement them in our Internet
Multimedia Subsystem-based test bed, and further applying
our results to adapt the video sender bitrate and hence
optimize bandwidth for specific content type.
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